Please provide a solution for this problem.
OA и OB — две нити, шарнирно соединенные в точке O. OA = OB. М — середина горизонтальной доски АВ. Насекомое находится в точке А. ОМ = 10 см. Вся система находится в состоянии покоя. Теперь система освобождается, и насекомое перемещается из точки А в точку Б так, чтобы дощечка не вращалась. Найдите время, за которое насекомое доберется до точки В?
OA and OB are two threads hinged at O. OA = OB. M is midpoint of horizontal plank AB. An insect is at A. OM = 10 cm. The whole system is held at rest. Now, system is released and the insect moves from A to B in such a way that the plank doesn’t rotate. Find the time taken for insect to reach point B?
initially, the system is held at rest, thus the plank is inclined (so you can find the relationship between the inclination angle and mass ratio via expressing sum of torques = 0)
then the insect moves because of friction force (and mg\sin\varphi) that, apparently, can be arbitrarily changed in such way that plank doesn’t rotate
I think the next ideas are correct, but I am not quite sure. So in order to plank not to rotate there shoud be another force that produces torque \tau = mgx. If the bug moves with some acceleration, then it is pushed by plank, and bug itself pushes the plank (we can apply Newton’s thrid law here because plank does not rotate)[1].
the last part of the solution is left to the reader as an assignment ↩︎