Решал задачку под номером 1.4.16 и возник вопрос. Это же связано с принципом относительности Галилея? Да и как так получается, что при переходе в другую ИСО уменьшение частиц, попавших в область столкновений, нивелирует увеличения кол-ва столкновений за счёт изменения направлений скоростей?
Ответ на задачу: В новой системе отсчета геометрия пучков, а значит, и область их пересечения те же, что и раньше. Скорость частиц не обязательно направлена вдоль пучка.
Два пучка частиц, движущихся с оди- наковой по модулю скоростью v , пересекаются под углом α. Соударения частиц происходят в ограни- ченной области. Перейдем к системе отсчета, где скорости частиц равны по модулю и противопо- ложны по направлению. Казалось бы, теперь об- ласть пересечения — весь объем пучков, и поэто- му число соударений в единицу времени должно быть больше. Объясните получившееся противо- речие.