Вычесление кинетических параметров


@eudaimon Можешь помочь

Приветствую вас! Я - Эвдемон, и помогу вам разобраться с этой задачей по кинетическим параметрам, используя метод Сократа. Давайте разберем задачу пошагово.

Для начала давайте убедимся, что мы понимаем, что нам дано:

  1. Закон Бера-Ламберта: A = εlc
  2. Коэффициент молярной экстинкции ε = 6220 л⋅моль⁻¹⋅см⁻¹
  3. Длина пути света l = 1 см
  4. У нас есть значения изменения абсорбции (ΔA/Δt) для разных концентраций субстрата (S)

Скажите, как вы думаете, какую формулу нам нужно использовать, чтобы найти начальную скорость (v) из данных изменения абсорбции со временем (ΔA/Δt)?

Подсказка: Вспомните, что начальная скорость - это изменение концентрации продукта во времени (Δc/Δt), и как это связано с изменением абсорбции через закон Бера-Ламберта.

Давайте вместе выведем эту формулу, и тогда вы сможете рассчитать все значения v₀ для каждой концентрации субстрата S.

V = εlVo

Давайте разберем это внимательнее.

Формула V = εlVo не совсем точна в данном контексте. Подумаем логически:

  1. Что у нас есть:

    • Закон Бера-Ламберта: A = εlc
    • Значения ΔA/Δt из таблицы
    • ε = 6220 л⋅моль⁻¹⋅см⁻¹
    • l = 1 см
  2. Что нам нужно найти:

    • Начальную скорость v (или V₀), которая представляет собой Δc/Δt
  3. Если мы продифференцируем уравнение A = εlc по времени, получим:
    ΔA/Δt = εl⋅Δc/Δt

Отсюда можем выразить скорость:
Δc/Δt = (ΔA/Δt)/(εl)

Теперь я задам вопрос: как мы можем использовать это уравнение с данными из таблицы?

Например, возьмем первое значение ΔA/Δt = 0.313. Как мы можем найти соответствующую скорость, зная что ε = 6220 л⋅моль⁻¹⋅см⁻¹ и l = 1 см?

1 лайк

Подставить в формула которую ты вывел

Правильно! Давайте подставим значения в формулу:

v = (ΔA/Δt)/(εl)

Для первого значения ΔA/Δt = 0.313:

v = 0.313/(6220 × 1) = 0.313/6220 = 0.0000503 ммоль⋅мин⁻¹

Теперь я предлагаю вам самостоятельно рассчитать скорости для остальных значений ΔA/Δt:

  • 0.520
  • 0.609
  • 0.616
  • 0.610

Помните, что:

  1. Формула остается той же: v = (ΔA/Δt)/(εl)
  2. ε = 6220 л⋅моль⁻¹⋅см⁻¹
  3. l = 1 см
  4. Результат нужно округлить до 3 десятичных знаков

Попробуйте рассчитать следующее значение для ΔA/Δt = 0.520, и мы проверим ваш результат.

8.3610^-5
9.791
10^-5
9.910^-5
9.81
10^-5

Отлично! Давайте проверим все ваши расчеты.

Для всех значений ΔA/Δt:

  1. 0.313/6220 = 5.03×10⁻⁵ ммоль⋅мин⁻¹
  2. 0.520/6220 = 8.36×10⁻⁵ ммоль⋅мин⁻¹
  3. 0.609/6220 = 9.79×10⁻⁵ ммоль⋅мин⁻¹
  4. 0.616/6220 = 9.90×10⁻⁵ ммоль⋅мин⁻¹
  5. 0.610/6220 = 9.81×10⁻⁵ ммоль⋅мин⁻¹

Ваши расчеты верны! Теперь мы можем заполнить таблицу:

S V₀ (ммоль⋅мин⁻¹)
0.2 5.03×10⁻⁵
0.4 8.36×10⁻⁵
0.8 9.79×10⁻⁵
1.2 9.90×10⁻⁵
1.5 9.81×10⁻⁵

Что вы можете сказать о зависимости скорости реакции от концентрации субстрата, глядя на полученные результаты? Заметили ли вы какую-нибудь закономерность?

V0 увеличивается с концентрацией пока не достигнет Vmax?

Именно так! Превосходное наблюдение! Вы точно описали характерную особенность ферментативной кинетики Михаэлиса-Ментен. Давайте разберем это подробнее:

  1. При низких концентрациях (от 0.2 до 0.8):

    • Скорость резко возрастает
    • От 5.03×10⁻⁵ до 9.79×10⁻⁵ ммоль⋅мин⁻¹
  2. При высоких концентрациях (1.2 - 1.5):

    • Скорость практически не меняется
    • Колеблется около 9.8-9.9×10⁻⁵ ммоль⋅мин⁻¹
    • Это и есть приближение к Vmax

Это классический пример насыщения фермента субстратом, где:

  • Сначала скорость почти линейно зависит от концентрации субстрата
  • Затем кривая выходит на плато (Vmax)
  • Это происходит, когда все активные центры фермента заняты субстратом

Как вы думаете, почему скорость не может бесконечно увеличиваться с ростом концентрации субстрата?

Все ферменты начинают “забиваться”?

Да, вы мыслите в правильном направлении! Давайте уточним эту концепцию, используя более научную терминологию.

Когда мы говорим, что ферменты “забиваются”, на самом деле происходит следующее:

  1. У каждого фермента есть определенное количество активных центров
  2. Каждый активный центр может работать только с одной молекулой субстрата одновременно
  3. При достижении насыщения:
    • Все активные центры заняты
    • Добавление новых молекул субстрата уже не приводит к увеличению скорости
    • Фермент работает на максимальной скорости (Vmax)

Это похоже на ситуацию в ресторане:

  • Активные центры = столики в ресторане
  • Субстрат = посетители
  • Даже если у входа будет стоять очередь (высокая концентрация субстрата), ресторан не сможет обслужить больше посетителей, чем у него есть столиков

Исходя из этого, можете ли вы предположить, какие факторы могли бы увеличить максимальную скорость реакции (Vmax)?

Можешь объяснить ингибиторы и то как они влияют на vmax Km и механизм под этим

Ах, прекрасный вопрос о регуляции ферментативной активности! Давайте рассмотрим основные типы ингибирования, подобно тому, как древние греки классифицировали различные явления природы.

  1. Конкурентное ингибирование:
  • Ингибитор похож на субстрат и конкурирует за активный центр
  • Влияние:
    • Km увеличивается (нужно больше субстрата для достижения той же скорости)
    • Vmax не меняется (при очень высокой концентрации субстрата ингибитор “вытесняется”)
  • Механизм: как если бы в театр пришли зрители с поддельными билетами на те же места
  1. Неконкурентное ингибирование:
  • Ингибитор связывается не с активным центром, а с другим участком фермента
  • Влияние:
    • Km не меняется
    • Vmax уменьшается (часть ферментов становится неактивной)
  • Механизм: словно некоторые актёры в театре потеряли голос - количество мест то же, но представление идёт не в полную силу
  1. Смешанное ингибирование:
  • Ингибитор влияет и на связывание субстрата, и на каталитическую активность
  • Влияние:
    • Km может как увеличиваться, так и уменьшаться
    • Vmax уменьшается
  • Механизм: комбинация предыдущих эффектов
  1. Бесконкурентное ингибирование:
  • Ингибитор связывается только с комплексом фермент-субстрат
  • Влияние:
    • Km уменьшается
    • Vmax уменьшается
  • Механизм: как если бы кто-то мешал уже начавшемуся представлению

Графически это выглядит так:

В координатах Лайнуивера-Берка (1/v от 1/[S]):

  1. Конкурентное: линии пересекаются на оси y
  2. Неконкурентное: линии пересекаются на оси x
  3. Смешанное: линии пересекаются где-то между осями
  4. Бесконкурентное: линии параллельны

Какой тип ингибирования, по вашему мнению, наиболее эффективен для регуляции метаболических путей? И почему?

Конкурентный , потому что за ним можно легко “прибраться” ?

Интересная мысль! Давайте разовьем её подробнее.

Действительно, конкурентное ингибирование имеет важные преимущества для регуляции метаболизма:

  1. Обратимость:
  • Как вы верно заметили, можно “прибраться” - ингибирование легко обратимо
  • При повышении концентрации субстрата эффект ингибитора можно преодолеть
  • Это даёт клетке гибкость в регуляции
  1. Быстрый ответ:
  • Система может быстро реагировать на изменения
  • Похоже на термостат: быстрое включение/выключение
  1. Чувствительность к метаболическим потребностям:
  • Если субстрата много - путь работает
  • Если мало - ингибитор эффективнее блокирует

Но давайте подумаем глубже:

  • В каких ситуациях другие типы ингибирования могут быть более предпочтительны?
  • Например, когда может быть полезно неконкурентное ингибирование, которое нельзя преодолеть простым увеличением концентрации субстрата?

Даже не знаю можешь ответь на этот вопрос?

Конечно! Давайте рассмотрим ситуации, где неконкурентное и другие типы ингибирования особенно важны:

  1. Неконкурентное ингибирование полезно когда:
  • Нужно полностью остановить метаболический путь независимо от количества субстрата
  • Например:
    • При клеточном стрессе
    • При апоптозе (программируемой смерти клетки)
    • Когда токсичные вещества должны быть немедленно нейтрализованы
  • Даже избыток субстрата не “перезапустит” реакцию
  1. Бесконкурентное ингибирование эффективно:
  • В циклических процессах
  • Когда нужно регулировать скорость уже идущей реакции
  • В случаях, когда важна обратная связь от продуктов реакции
  1. Смешанное ингибирование полезно:
  • В сложных регуляторных каскадах
  • Когда требуется тонкая настройка метаболического пути
  • При необходимости множественного контроля

Метафора для понимания:

  • Конкурентное = охранник у входа (можно уговорить пустить)
  • Неконкурентное = отключение электричества (никак не обойти)
  • Бесконкурентное = замедление работы уже запущенного конвейера
  • Смешанное = комбинация разных способов контроля

Теперь, когда вы видите полную картину, как вы думаете, почему в живых системах часто встречаются все эти типы ингибирования, а не только какой-то один?

1 лайк

Объясний для циклических процессов

Ах, прекрасный вопрос! Давайте разберем, почему бесконкурентное ингибирование особенно важно в циклических процессах.

Вспомните особенности бесконкурентного ингибирования:

  1. Ингибитор связывается ТОЛЬКО с комплексом фермент-субстрат (ES)
  2. Он не мешает начальному связыванию субстрата
  3. Он “ждёт”, пока комплекс образуется

Теперь представьте циклический процесс, например, цикл Кребса:

  • Это как конвейер, где каждый продукт становится субстратом для следующей реакции
  • Процесс должен быть точно синхронизирован
  • Скорость всех этапов должна быть согласована

Почему здесь эффективно бесконкурентное ингибирование:

  1. Оно позволяет “притормозить” процесс, когда он уже идёт
  2. Не блокирует начало реакции, а регулирует её скорость
  3. Особенно важно, когда продукты одной реакции влияют на скорость других

Метафора:
Представьте карусель в парке:

  • Конкурентное ингибирование = не давать людям сесть на карусель
  • Бесконкурентное = уменьшать скорость уже крутящейся карусели

Как вы думаете, что произойдет с циклическим процессом, если использовать только конкурентное ингибирование вместо бесконкурентного?

1 лайк